翻訳と辞書
Words near each other
・ Hassayampa River Canyon Wilderness
・ Hassayampa, Arizona
・ Hassberge Formation
・ Hasse
・ Hasse Andersson
・ Hasse Aro
・ Hasse Borg
・ Hasse Börjes
・ Hasse derivative
・ Hasse diagram
・ Hasse Ekman
・ Hasse Fröberg
・ Hasse Funck
・ Hasse invariant
・ Hasse invariant of a quadratic form
Hasse invariant of an algebra
・ Hasse Jeppson
・ Hasse Lake (Alberta)
・ Hasse Mattisson
・ Hasse norm theorem
・ Hasse Pavia Lind
・ Hasse Persson
・ Hasse principle
・ Hasse Sjöö
・ Hasse Thomsén
・ Hasse Walli
・ Hasse Zetterström
・ Hasse's theorem
・ Hasse's theorem on elliptic curves
・ Hassea


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hasse invariant of an algebra : ウィキペディア英語版
Hasse invariant of an algebra
In mathematics, the Hasse invariant of an algebra is an invariant attached to a Brauer class of algebras over a field. The concept is named after Helmut Hasse. The invariant plays a role in local class field theory.
==Local fields==
Let ''K'' be a local field with valuation ''v'' and ''D'' a ''K''-algebra. We may assume ''D'' is a division algebra with centre ''K'' of degree ''n''. The valuation ''v'' can be extended to ''D'', for example by extending it compatibly to each commutative subfield of ''D'': the value group of this valuation is (1/''n'')Z.〔Serre (1967) p.137〕
There is a commutative subfield ''L'' of ''D'' which is unramified over ''K'', and ''D'' splits over ''L''.〔Serre (1967) pp.130,138〕 The field ''L'' is not unique but all such extensions are conjugate by the Skolem–Noether theorem, which further shows that any automorphism of ''L'' is induced by a conjugation in ''D''. Take γ in ''D'' such that conjugation by γ induces the Frobenius automorphism of ''L''/''K'' and let ''v''(γ) = ''k''/''n''. Then ''k''/''n'' modulo 1 is the Hasse invariant of ''D''. It depends only on the Brauer class of ''D''.〔Serre (1967) p.138〕
The Hasse invariant is thus a map defined on the Brauer group of a local field ''K'' to the divisible group Q/Z.〔〔Lorenz (2008) p.232〕 Every class in the Brauer group is represented by a class in the Brauer group of an unramified extension of ''L''/''K'' of degree ''n'',〔Lorenz (2008) pp.225–226〕 which by the Grunwald–Wang theorem and the Albert–Brauer–Hasse–Noether theorem we may take to be a cyclic algebra (''L'',φ,π''k'') for some ''k'' mod ''n'', where φ is the Frobenius map and π is a uniformiser.〔Lorenz (2008) p.226〕 The invariant map attaches the element ''k''/''n'' mod 1 to the class. This exhibits the invariant map as a homomorphism
: \underset(L/K) \rightarrow \mathbb/\mathbb .
The invariant map extends to Br(''K'') by representing each class by some element of Br(''L''/''K'') as above.〔〔
For a non-Archimedean local field, the invariant map is a group isomorphism.〔〔Lorenz (2008) p.233〕
In the case of the field R of real numbers, there are two Brauer classes, represented by the algebra R itself and the quaternion algebra H.〔Serre (1979) p.163〕 It is convenient to assign invariant zero to the class of R and invariant 1/2 modulo 1 to the quaternion class.
In the case of the field C of complex numbers, the only Brauer class is the trivial one, with invariant zero.〔

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hasse invariant of an algebra」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.